Semiparametric Bayesian measurement error modeling
نویسندگان
چکیده
منابع مشابه
Semiparametric Bayesian measurement error modeling
This work introduces a Bayesian semi-parametric approach for dealing with regression models where the covariate is measured with error. The main advantage of this extended Bayesian approach is the possibility of considering generalizations of the elliptical family of models by using Dirichlet process priors in the dependent and independent situations. Conditional posterior distributions are imp...
متن کاملRidge Stochastic Restricted Estimators in Semiparametric Linear Measurement Error Models
In this article we consider the stochastic restricted ridge estimation in semipara-metric linear models when the covariates are measured with additive errors. The development of penalized corrected likelihood method in such model is the basis for derivation of ridge estimates. The asymptotic normality of the resulting estimates are established. Also, necessary and sufficient condition...
متن کاملBayesian semiparametric stochastic volatility modeling
This paper extends the existing fully parametric Bayesian literature on stochastic volatility to allow for more general return distributions. Instead of specifying a particular distribution for the return innovations, nonparametric Bayesian methods are used to flexibly model the distribution’s skewness and kurtosis while volatility dynamics follow a parametric structure. Our Bayesian approach p...
متن کاملBayesian Semiparametric Multivariate GARCH Modeling
This paper proposes a Bayesian nonparametric modeling approach for the return distribution in multivariate GARCH models. In contrast to the parametric literature the return distribution can display general forms of asymmetry and thick tails. An infinite mixture of multivariate normals is given a flexible Dirichlet process prior. The GARCH functional form enters into each of the components of th...
متن کاملSemiparametric estimators of functional measurement error models with unknown error
We consider functional measurement error models where the measurement error distribution is estimated non-parametrically.We derive a locally efficient semiparametric estimator but propose not to implement it owing to its numerical complexity. Instead, a plug-in estimator is proposed, where the measurement error distribution is estimated through non-parametric kernel methods based on multiple me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Multivariate Analysis
سال: 2010
ISSN: 0047-259X
DOI: 10.1016/j.jmva.2009.11.004